
NASA-CR-197220

NASA Contractor Report XXXX

LINEAR AND NONLINEAR DYNAMIC
ANALYSIS OF REDUNDANT LOAD PATH

BEARINGLESS ROTOR SYSTEMS

V.R. Murthy and Louis A. Shultz

Department of Mechanical, Aerospace

Manufacturing Engineering

Syracuse University

Syracuse, New York

Prepared for

Ames Research Center

Under Grant NAG 2-306

October 1994

and

#"//j/" -

/It-- "" ,. 'I_.

5 f.Lf
,,_.0

• _ _

/ k..-' -,j

0_ _ 0
Z _ 0

0

t.t.t.kJ _
O C3 ..J .-
Z _ t'-

ua ..j t_ _
Z<_3 U

t--- 3,_

o_

m .J_ CD
_ ZC3 i-,.- _
Z 0 u..I 0 N

NASA

National Aeronautics

and Space Administration
Scientific and Technical

Information Branch

1994 i



II

PREFACE

This research was sponsored by the NASA-Ames Research

Center, California under Grant No. 2-306. Randall L. Peterson was the

technical monitor of the project. Several graduate students at

Syracuse University participated in the program including Louis A.

Shultz, Arun M. Joshi and Daniel M. Lauzon.



III

SUMMARY

A direct transfer matrix method is developed to analyze the

linear and nonlinear dynamics of multiple-load-path bearingless

rotor blades. The method is applied to determine (1) the natural

frequencies and modes about the initial state, (2) the nonlinear

steady state deflections, (3) the natural frequencies and modes about

the steady deformed state and (4) aeroelastic stability of multiple-

load-path rotor blades in hover. A Newton-Raphson iterative

method based on quasilinearization of the nonlinear distributed

boundary value problem is developed to solve the steady state

deflections of the blade. Aerodynamic forces are calculated

employing two dimensional strip theory and quasi-steady

aerodynamics. The formulation is validated by comparing the results

for single and multiple-load-path blades with those obtained by

other methods in the literature. For forward flight applications a

discretization based on either modal coordinates or harmonic

analysis is recommended.
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• INTRODUCTION

A large class of systems occurring in engineering practice

consist of one dimensional beam and beamlike elements. Sometimes

the systems contain either a single element or a number of elements

linked together end to end in the form of a chain. Well known

examples are simple beams, rotor or propeller blades, continuous

beams, fuselage bulkheads, and turbine generator shafts. The

transfer matrix (which is one form of frequency response matrix) is

ideally suited to treat such one dimensional chainlike systems

governed by linear equations. Intermediate conditions and the

number of degrees of freedom have no effect on the order of the

transfer matrices and depends only on the order of the governing

differential equations.

Holzer [1] initially applied the transfer matrix method to

determine the torsional vibrations of rods and the method is

generally known as Holzer's method. Myklestad [2] applied a method

analogous to Holzer's method to determine the bending-torsion

modes of beams and the method is usually called Myklestad's

method. Thomson [3] applied the method in a matrix form to more

general vibration problems. The original application of the transfer

matrix method also includes the description of steady state

behaviour of four terminal electrical networks, in which case the

method is commonly referred to as four-pole parameters method.

Molloy [4] applied four pole parameters to study acoustical,



2

mechanical, and electromechanical vibration problems. Pestel and

Leckie [5] have listed transfer matrices for elasto-mechanical

elements up to twelfth order and the textbook contains several

references on transfer matrices. Rubin [6,7] has provided a general

treatment for transfer matrices and their relation to other forms of

frequency response matrices. Transfer matrices have been applied

to a wide variety of engineering problems by a number of

researchers, including Targoff [8], Lin [9], Lin and McDaniel [10],

Mercer and Seavey [11] Mead [12], Mead and Sen Gupta [13],

Henderson and McDaniel [14], McDaniel [15], McDaniel and Logan

[16], Murthy and Nigam [17] _ Murthy and McDaniel [18,19].

These applications deal with beams, beam type periodic structures,

cylindrical shells and stiffened rings.

The main advantage of the transfer matrix method is the

smallness of the order of the matrices involved. The order of the

transfer matrix will be equal to the number of elements in the state

vector. The simplicity gives rise to several numerical difficulties in

using transfer matrices. These can occur first, when calculating

higher natural frequencies and their associated mode shapes and

second, when intermediate geometric compatibility conditions are

stiff. Despite these numerical problems transfer matrices offer an

efficient means to study the dynamics of one dimensional systems.

Combined with leaps in computing power, transfer matrices make it

possible to tackle new classes of problems such as near real-time

simulation and optimization. These new problems are feasible

O01_UNAL PAC_ m
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because one dimensional systems can be modeled with

computationally efficient transfer matrices.

The transfer matrix method is very popular for the analysis of

rotor blades [20-26] and the reasons are (1) most of the time, only a

few number of lower natural frequencies and their associated mode

shapes are of interest, (2) no intermediate stiff conditions are

involved in the calculation of frequencies, (3) the order of the

frequency determinant is at the most six by six and (4) the method is

very appealing for programming. In fact, several rotor dynamics

programs within the helicopter organizations employ transfer matrix

modeling for their blades. Examples of such programs include

Myklestad program of Bell Helicopter [27] , Rotorcraft Airframe

Comprehensive Aeroelastic Program (RACAP) of McDonnel Douglas

Helicopter Co. [28], G400 program of United Technologies [29] , C60

Program of Boeing Helicopter and KTRAN of Sikorsky Aircraft.

All the existing helicopters employ either articulated, teetering,

gimbaled or hingeless blades for their rotors to relieve high blade

stresses encountered at the blade root during normal operating

conditions. Examples of these rotor types are shown in Figures 1.1

through 1.4. An advanced configuration known as the bearingless

rotor is currently being employed in new helicopters. The

bearingless design is an attempt to realize the several best features

of articulated rotors (lower vibration and gust sensitivity), teetering

rotors (low cost) and hingeless rotors (high control power, superior
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Figure 1.2 Model of a Bell Two Bladed Teetering Rotor
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flying qualities, mechanical simplicity and low maintenance). The

recent advances in composite materials make the bearingless rotor a

viable concept [30]. The rotor blades in these systems are attached

to the hub via composite flexible structural elements known as load

paths or branches. These branches accommodate rotor motions by

deflecting elastically thereby eliminating the need for hinges.

Conventional helicopter blades are idealized as single-load-path

blades and as mentioned earlier the transfer matrix method is a very

convenient and efficient method to analyze such single branch

structures. All practical designs of bearingless rotors include

multiple branches at the root, and the one that was flight tested by

Boeing Helicopter Co. has three load branches consisting of two

flexbeams and a nonenclosing torque tube [3111 It is shown in Figure

1.5. Now, almost all of the current bearingless rotor designs consist

of a single flexbeam with a wrap-around torque tube called a pitch

cuff (Figure 1.6).

The goal of this research is to develop the transfer matrix

method to treat nonlinear autonomous boundary value problems

with multiple branches. The application is the complete nonlinear

aeroelastic analysis of multiple-branched rotor blades. Once the

development is complete, it can be incorporated into the existing

transfer matrix analyses mentioned previously. There are several

difficulties to be overcome in reaching this objective. The

conventional transfer matrix method is limited in that it is applicable
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only to linear single branch chain-like structures, but consideration

of multiple branch modeling is important for bearingless rotors [33].

Also, hingeless and bearingless rotor blade dynamic characteristics

(particularly their aeroelasticity problems) are inherently nonlinear.

Murthy and Joshi [34] have developed a transfer matrix method to

determine the natural frequencies and modes of rotor blades with

multiple branches at the root. This development was based on linear

homogeneous equations of motion. Sangha [35] has described a

transfer matrix method to analyze a bearingless multiple-load-path

blade.

In the present work the nonlinear equations of motion and the

multiple-branched boundary value problem are treated together

using a direct transfer matrix method. First, the formulation is

applied to a nonlinear single-branch blade to validate the nonlinear

portion of the formulation. The nonlinear system of equations is

iteratively solved using a form of Newton-Raphson iteration scheme

developed for differential equations of continuous systems. The

formulation is then applied to determine the nonlinear steady state

trim and aeroelastic stability of a rotor blade in hover with two

branches at the root. A comprehensive computer program is

developed, and is used to obtain numerical results for the (1) free

vibration, (2) nonlinearly deformed steady state, (3) free vibration

about the nonlinearly deformed steady state and (4) aeroelastic

stability tasks. The numerical results obtained by the present

method agree with results from other methods.
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• EQUATIONS OF MOTION

2.1 Nonlinear Equations for Elastic Bending and Inertial

Loadings

The nonlinear differential equations of motion for the fully

coupled elastic flapwise bending, chordwise bending, torsion and

axial extension of twisted nonuniform rotor blades are given below.

The development of the equations is the subject of reference [36], in

which their complete derivation is presented. In addition to the

present project, these equations form the basis for structural beam

modeling in the current state of the art rotorcraft analysis programs.

The equations are valid for any beam, and the mass, elastic and

tension axes need not be coincident. The coordinate system they are

derived in is an undeformed coordinate system, with x positive

outward along the span, y positive towards the leading edge, and z

positive upwards (see Figure 2.1). For algebraic conciseness the

.
terms containing eA, B_, B 2, C1 and C_ are treated as zero. It should

be noted that this assumption does not affect the general nature of

the formulation presented here-in.

Axial Extension:

[EA(u'+v'2/2+w'2/2)] ' + fl2mu - mii + 2time, = -D2mx (2.1)
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Figure 2.1 Rotor blade deformed (x',yt,z t) and undeformed (x,y,z)

coordinate systems and displacements.
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Lead-Lag"

- (Tv')' + {(Elzcos2(0+t_) + Elysin2(0+_)]v ''

+(EIz-EIy)cos(0+_)sin(0+O)w" }"

+ 2f_mia + m_ - me, sin0 - 2mef_(#'cos0+ff'sin0)

- mf_2[v+ecos(0+O)] - 2mf_13pcv_

{me[f_Excos(0+_) + 2f_cos0)}' = Lv (2.2)

Flap:

(Tw')' + {(EIz-EIy)eOs(0+_)sin(0+_)]v"

+(Elzsin2(0+_) + Elycos2(0+_)w" } ''

+ 2mf_13pc_, + mqe + me,cos0

- {me[f22xsin(0+O)

+ 2f_.sin0)}' = Lw - f_2ml3pcX (2.3)

Torsion:

- (GJ+Tk2)_'] ' + (EIz-EIy)(W"2-v"2)cos0sin0

2 2 2
+ v"w"cos20] + mk_ + mf_ _(km2-kml)cos20

me[_2x(w'cosO-v'sinO)

(_' -f_2v)sin0+ qecos0] = Me

- mf_2(k2.-k 2 )cos0sin0 - mef_213pcXCOS0
•-z "" 1

(2.4)
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2.2 First Order Equations

Equations (2.1)-(2.4) can be reduced to a system of first-order

nonlinear differential equations in terms of the state vector contain-

ing deflections and forces [37]. The state vector {Z} is defined as

[u w v E _ _ M x My Mz Vy Vz VxJ (2.5)

and the governing equations are written in the undeformed

coordinate system.

First the differential equations of the three translations u, w

and v are developed. From equation (90) of reference [36]

/Vx'--Vx =EA u' + -_--- +

The bending rotations (slopes) are

(2.6)

w'=e (2.7)

(2.8)

Substitution of equations (2.7) and (2.8) into equation (2.6) gives

u' = -e2/2 - _,2/2 + Vx/EA (2.9)

Expressions for the bending rotations (e', 4', ¢') are determined

as follows. From equations (91), (92) and (96) of reference [36]

Mx' = GJ_' (2.10)
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Mz' = EIz[v" cos(O+¢) + w" sin(O+¢)]

My' = EIy[v" sin(O+¢) - w" cos(O+¢)]

(2.11)

(2.12)

In matrix form, the above equations are

{Mx}i00o]f tMz' ElzsoC Elzcoc 0 _'

My' -Elycoc EIysct 0 0'

where s = sine, c = cosine and oc = 0 + ¢. In transforming these

moments to the undeformed coordinate system, the following

parameters must be considered. From equation (A6) of [36]

X

0+_+ v'w'=0+,- _v"w'dx + v'w'
O

or O+$+v'w'=O+¢+_

(2.13)

(2.14)

where

X

ag= v'w'- _v"w'dx =
0

Assuming small _,

X

S ' "dV W X

0

(2.15)

0+$+ v'w' = 0 + ¢ (2.16)

Given equation (2.16), equations (3) of [36] relate the bend-

ing moments in the deformed coordinate system (x', y', z') to those

in the undeformed coordinate system (x,y,z)
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Mx = Mx' - Mz'(-gsa+ecot) - My'(_cot+esot)

Mz = Mx'e + Mz'cot + My'sot

My = Mx'_- Mz'sot + My'cot

(2.17)

(2.18)

(2.19)

by neglecting e 2, _2 compared to unity. In matrix form the above

equations are

{Mx}[+ss]{MxtMy s
Mz g -sot cot My'

(2.20)

Premultiplication of equation (2.13) by the coefficient matrix of

(2.20) results in an expression relating derivatives of rotations to

bending moments in the deformed coordinate system. Substituting

equation (2.20) into this expression gives

Mz = [C] _'

My ¢'

(2.21)

where [C] is defined as

[C] =
b + bl{ -bl{ - b3e GJ ]J-bl b3 GJe

-b2 b 1 GJ{

and
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bl = (EIy-EIz)cO_s(x

b2 = Elyc2_ + Elzs2(x

b3 = Elys2o_ + Elzc2o_

b4 = b3 - b2 •

Inversion of the coefficient matrix [C] in equation (21) and subse-

quent rearrangement yield the desired differential equations of

rotations.

(2.22)

g'= GJ(b3{-ble)Mx/D + GJbl(l+{2+b3{e/bl)Mz/D

GJb3( 1+e2+b 1{e/b3) My/D (2.23)

_'= GJ(bl_-b2e)Mx]D + GJb2(l+_ 2+bl_e/b2)Mz/D

GJbl ( 1+e2+b2_e/b 1)My/D

9'= (b3bz-b21)Mx/D + b3bz-b21)eMz/D

+ (b3bz-b21)_Mx/D

where

D = GJ[(b3bz-_-l)(l+_Z+e2)]

and

b3b2-b21 - EIyEIz

(2.24)

(2.25)

In equations (2.23) through (2.25), {2, e2 are neglected compared to

unity, yielding

b3_-ble bl b3
e' - Mx + -- Mz My (2.26)

EIyEIz EIyEIz EIyEIz
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_, bl_-b2e b2
- _ M× + EI-y--EIz M z

bl

EIyEIz Mz

¢, Mx Mz _=-o--+ c,J

Assuming the torsional displacement angle ¢ is small,

cos(0+¢) = cos0 - Csin0

sin(0+¢) = sin0 + ¢cos0

(2.27)

(2.28)

(2.29)

Substitution of (2.29) into (2.22) gives

bl = (EIy-EIz)(COS0 sin0 + ¢cos20)

b2 = EIy(cOs20 - Csin20) + EIz(sin20 + ¢sin20)

b3 = EIy(sin20 + Csin20) + EIz(cOs20 + ¢sin20)

b4 = b3 - b2

neglecting ¢_2 terms.

Define

(2.30)

al = (EIy-EIz)cos0sin0/EIyEIz

a2 = cos20/EIz + sin20/EIy

a3 = sin20/EIz + cos20/EIy

a4 = a3 -a2

Then from equation (2.30) and (2.31) let

(2.31)
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bl/EIyEIz = al - a4_

b2/EIyEIz = a2- 2a1_

b3/EIyEIz = a3 + 2alt_

b4/EIyEIz = a4

Substituting equation (2.32) into the

(2.28) for e', _' and _', and neglecting

yields

relations (2.26), (2.27) and

third order nonlinear terms

e' = (a3_-ale)M x + (al-a4_)Mz - (a3+2alt_)My

_'= (al_-a2e)M x + (a2-2al_)M z - (al-a4_)My

_' = Mx/GJ + Mze/GJ + My_GJ

(2.32)

(2.33)

(2.34)

(2.35)

The first order differential equations for the moments

developed from

(88) of [36].

dMx

dx

are

equations of equilibrium (68) of inertial moments

- Vye - Vz_ - m{e[(v-f_2v)(sin0+_cos0)

- vv(cos0+_sin0) + 2f2fisin0 - _2Xl3pcCOS0 ] - k2_

- t_2(k22-km21)(cos0sin0) + Ocos20 -_2cos0sin0)

2 2 )_sin0cos0-2_[(km2-km 1

+_(k22sin20 + kin2lCOS20)]} - Me (2.36)

where Me is the aerodynamic pitching moment about the elastic axis

dMz
= -Vy + Vx_ + me[f_2x(cos0-Osin0) + 2f_,cos0] (2.37)dx



21

dMx
dx = Vz + Vxe - me[f22x(sinO+¢cosO) + 2ta_,sinO] (2.38)

The first order differential equations for the forces are

developed from equations of equilibrium (69) of [36] and inertial

forces given by equation (87) of [36].

dV2¢- - m{_, - o/_sin0 - f_2[v + e(cos0-¢sin0)]
dx -

+ 2f_[/a - e{_cos0+_sin0)]} - Lv - 2mf_13pcq¢ (2.39)

where Lv is the aerodynamic force acting in the y direction

positive towards the leading edge

dVz _ m(w- o¢cos0) - Lw + 2mf_13pcX, + ml3pcf_2x (2.40)
dx -

where Lw is the aerodynamic force acting in the z (upward)

direction.

dVx = mf22(x+u) - 2t2m_, + mii (2.41)
dx

Thus equations (2.9), (2.7), (2.8) and (2.33) through (2.41) are the

desired first order nonlinear differential equations governing the



state vector.

next.

22

The aerodynamic loadings, Lv, Lw and Me are evaluated

2.3 Aerodynamics

Helicopter rotors typically operate in a complex aerodynamic

environment. During one revolution (typically 1/5 of a second) the

blade can experience large variations in angle of attack and Mach

number, unsteady aerodynamic effects and stall effects.

To model the rotor aerodynamic environment, lifting line or

lifting surface theories can be employed. Lifting line technology is a

more mature technology and for that reason is used extensively in

the helicopter industry.

The rotating blade is modeled as a rotating lifting line. Strip

theory is then applied to this lifting line, resulting in a finite number

of discrete bound vortex segments representing airfoil sections.

Unsteady aerodynamic theory has been developed for the lifting line

approximation of a fixed wing in references [37] and [39]. Unsteady

aerodynamics takes the complete vortex system into account and

gives rise to two classes of forces - circulatory and noncirculatory.

The circulatory forces are a consequence of the vorticity (bound and

trailed). The noncirculatory forces (sometimes referred to as virtual

or apparent forces) are not due to vorticity. Lift may be expressed

as the sum of its circulatory and noncirculatory components.

LTotal = LCirculatory + LNoncirculatory (2.42)
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Theodorsen noted in [37] that if a wing was undergoing pure

harmonic motion at frequency co, the wake vorticity was periodic and

subsequently circulatory lift would be also. The Theodorsen lift

deficiency function C(k) thus modifies the circulatory lift. It accounts

for the effect of shed vorticity in the wake and subsequent time

varying lift build up on the wing.

LTotal = C(k)LCirculatory + LNoncirculatory (2.43)

where k is a reduced frequency, given by

cob

k = -U-- (2.44)

The magnitude of C ranges from .5 at high frequency to 1. at low

frequency, and thus usually reduces the circulatory lift. The phase of

C represents the delay (or lag) in the lift build up. The magnitude

and phase of C(k) are shown in Figure 2.2. There are different levels

of approximations for unsteady aerodynamics, and usually they are

divided into the following three categories.

(i) Complete Unsteady Aerodynamics

The complete theory is employed to represent the unsteady

effects of the shed vorticity, and includes circulatory and

noncirculatory forces.

LTotal = C(k)LCirculatory + LNoncirculatory (2.45)
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Figure 2.2 Theodorsen Lift Deficiency Function, C(k)
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The results obtained correspond to characteristic frequencies of

approximately 40 cycles per second.

(ii) Quasi-Unsteady Aerodynamics

In this instance the noncirculatory terms are neglected.

LTotal = C(k)LCirculatory (2.46)

The theory yields satisfactory results for frequencies between

5 and 15 cycles/sec,

(iii) Quasi-Steady Aerodynamics

LTotal = LCirculatory (2.47)

This approximation is generally used at charactreristic

frequencies which are on the order of 1 cycle per second. It

neglects the effect of wake vortices on the flow field, but

unsteady rotor motions still produce an unsteady downwash.

This unsteady downwash is employed to establish the bound

circulation by satisfying the tangency boundary condition.

In the present formulation the quasi-steady aerodynamics are

employed because the aeroelastic instabilities under investigation

are quite low. (In hover the reduced frequency is small, so C(k) = 1

and negligible phase lag is a good approximation. As forward speed
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is increased, the reduced frequency also increases. For increasing k,

C(k) is a value <1.0 (as can be seen in Figure 2.2) and the accuracy of

the approximation is somewhat reduced although it is still useful.)

2.3.1 Airloads

The quasi-steady lift and moment coefficients about the mid

chord point are given by [39] as

1,,k[ 1-_*
Cqs= 2 _V 1+_*

-1
(2.47)

where the downwash velocity is

(2.48)

and

pza pZa
w(y,t) = --- U w (2.49)

Pt py

C qs = lqs/pU2b

C qs = mqs/pU2b2

The equation for the meanline of a thin airfoil which is free to

translate vertically and pitch about the mid-chord is given by (see

Figure 2.3)
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Figure 2.3. Airfoil in Vertical Translation and Pitch About the
Mid-Chord



Za(y,t) = hc/2 + tan o_y
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(2.50)

From equation (2.49), assuming small o_ the downwash velocity is

given by

w(y,t) = hc/2- o_y- 1]o_

Nondimensionalizing with respect to semi-chord b yields

w(3,,t)= ilc/2 - Uo_ + b_3: (2.51)

Equation (2.51) is then substituted into the expressions for quasi-

steady lift and moment (2.47) and (2.48). The resulting equations

may then be integrated with respect to y with the help of the

integrals in Appendix A.

Cql s 27r b •= _ (-iac/2+ u_ +_-_)

Cmqc 2(-hc/2+U=)

(2.52)

(2.53)

Traditionally the coefficients are referred to the quarter chord

location (also the approximate aerodynamic center). The following

equations relate the airloads of mid-chord and quarter-chord and are

obtained from the geometry of Figure 2.4.
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Figure 2.4. Displacement Relations; Mid-Chord to
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1 = lc/4 = lc/2; Ot = Otc/4 = Ctc/2 1

hc/2 = hc/4- orb/2

m c/2 = mc/4 + lb/2

(2.54)

Substitution of equations (2.52) and (2.53) into equation (2.54) and

noting the thin airfoil theory theoretical result that 'a' (lift curve

slope) equals 27t yields the two dimensional section airloads

I= pUoc(-iac/c+ Uoc + b_ (2.55)

h

mc/4 =-pbUct (2)2 o_ (2.56)

Consider the airfoil to have properties such that the shear center

(elastic axis) is not coincident with the quarter-chord location.

When the airfoil is plunging and pitching about the shear center as

shown in Figure 2.5, the following relations may be written

hc/4 = he + cte b

Jm c/4 = me - leb

(2.57)

Obtain 1 and me with respect to the elastic axis (or shear center)

(consistent with the nonlinear equations of motion for elastic

bending). Substitution of equations (2.55) and (2.56) into equation

(2.57) and replacement of b by c/2 yields
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pac .: c
I = _ Hi-he + U= + _- (1-e)(_ } (2.58)

pac 4me =--_U( )2 8e{-_'- (-fie + Uot) + _(4e-e 2-1 } (2.59)

Ultimately it is desired to express 1 and me in terms of elastic

deflections, and induced and angular velocities. Towards this end,

consider a two dimensional airfoil in unsteady motion as shown in

Figure 2.6, noting that U is shown opposite to the free stream

direction to show it as the airfoil motion. Assuming coso_ = 1 and

sino_ = o_ the following expressions for the velocities along the y', z'

axes can be written

U=UT (2.60)

Up = he - Uot (2.61 )

From Appendix A of reference [40], the velocity components can be

written as

UT=_X+V

Up = -f_x(O+t_+X)) - (O+_)V + Vi + W + _VX(e+_pc)

o_ + f_(c+13pc)

where

(2.62)

(2.63)

(2.64)
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Figure 2.6. A/rfoil In Unsteady Motion
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X

= _ _e'dx = nonlinear angle-of-attack term
o

due to bending

(2.65)

Knowing the aerodynamic loadings at the correct location along

the chord line (i.e. at the shear center), resolve the airloads from the

wind axes back to the undeformed structural axis coordinate system.

Consider the aerodynamic loadings acting on the airfoil shown in

Figure 2.7. Resolving loadings into components T and S along the

deformed (x_,y',z ') coordinate system axes local to the airfoil gives

T = lcostz + dsintx

S = lsintz + dcoso_

(2.66)

(2.67)

where d is the profile drag given by

1 (2.68)
d = _- pU 2 Cd

and 1 is given by equation (2.58). From the geometry of Figure 2.6

Cosot=UT =4 U2+ UT2 = UTIU (2.69)

coso_ =-Up= 4 U2+ UT2 = UT/U (2.70)

since
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Figure 2.7. Aerodynamic Forces Resolution
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(2.71)

Substituting the equations for section lift and drag (2.58), (2.68) and

(2.69) through (2.71) into equations (2.66), (2.67) and (2.59) gives

airloads in the deformed coordinate system (x',y',z') as follows.

pac c
T = 2 {-UpUT+ _- (1-e)UT_} (2.72)

S =--_--9ac{-U 2 -2-c (l-e)Up_ _ Cda U2} (2.73)

Assuming that the resultant airfoil velocity V is approximately equal

to the freestream velocity U in Figure 2.7, a = 13+ _ is small. The

aeodynamic forces may be referred to the undeformed coordinate

system (x,y,z) used to derive the nonlinear elastic bending equations

so that they can be incorporated as forcing functions into the

differential equations of motion of the system.

Lv = S - T(13+_)

Lw = S(I]+_) + T

(2.74)

(2.75)

Substitution of equations (2.62) through (2.65), (2.58), (2.72) and

(2.73) into equations (2.59), (2.74), and (2.75) yields the following

equations for the aerodynamic forces.
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Lv _. mpac_ [v 2 _ f_2x2k2_f_xvi(0+O)2

- {2f_xk2 + (0+¢p)vi}v + {2vi- f2x(0+_)w

- kl,vi - kl_vi(e+ 13pc) - f_klw(e+ 13pc)] (2.76)

pac
Lw = _ [-f_xvi + f22x2(O+_+lO - f_2xv(e+ 13pc) + f22xkl(e+ 13pc)

- {f_kl(e+ 13pc) + l'2x(0+t_) - vi}v

- £)xw + klf_Xt_] (2.77)

pac C2 {f_x¢+n2x(e+13pc) + f_v(e+13pc)} (2.78)Me= k3Lw- 2 16

where

k 1 = c(1-e)/2

k2 = cd/a

k3 = ce/2

The following assumptions are made in the simplification process

leading to equations (2.76) through (2.78).

1. All third order nonlinear terms are dropped•

. • s s

2. u, v, w, V, _, t_, u, v, w, e, _,¢, 0, _pac, vi and k2 are

assumed to be small. Observe 0 is not assumed to be

small for elastic and inertial forces, but is assumed to be

small for the aerodynamics.

. • . • ¢ •

3. All nonlinear terms in u, v, w, e,_,¢ are dropped.

The induced velocity is computed as shown below.
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2.3.2 Induced Velocity Model

The induced velocity is computed from the combined

momentum and blade-element theory as given by the following

equation (reference 41).

I-aOr (-ao@vi=_Rl_ 16 + [, 16 ,)

-1
at_r 2 r /

+ 16 R (0+_) J (2.79)

Note that it is apparent from equations (2.76) through (2.79) that the

shear center need not coincide with the aerodynamic center at the

quarter chord point.
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• BRANCHED BLADES

Bearingless rotors feature blades connected to a hub via

multiple branches. Each branch is designed to react a specific

component of load developed by the rotor blade. Flexbeams are soft

in torsion, but stiff in bending. They react in and out-of-plane

bending moments and centrifugal loadings. Torque tubes or pitch

cuffs (which are aerodynamic fairings enclosing the flexbeams) are

soft in bending but stiff torsionally; they are used to control the

blade in pitch.

A schematic diagram of a multiply branched blade is shown in

Figure 3.1. The three branches are connected to the blade through a

rigid clevis. The inboard end of the branches are shown clamped.

However, the formulation is flexible enough to handle any other root

and intermediate clevis conditions.

For the analysis of branched structures by the transfer matrix

method, it is important to establish the equilibrium and compatibility

relations across the clevis.

3.1 Equilibrium Across the Clevis

The plane of the clevis is shown in Figure 3.2 where h iy and hzi

are the y and z locations of the i th branch from the location of the

blade (point 0). The free-body diagram for this clevis is shown in

Figure 3.3. Force and moment equilibrium across the clevis yield the

following equations:
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Figure 3.1. Schematic Drawing of a Three Branched Blade
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tl

Vx2= Z vi2
i=l
n

v,_ = Z v_,_
1=1
n

Vz 2 =ZV iz2
i=l

n

Mx_--2; ( Mix,_+ h_%- h_%)
i=l
n

• i i
My2 = Z (M}2 + hzVx 2)

i=l

n

M z2 = i=_l (Miz2 - hoVix2)

(3.1)

where n = number of branches.

The above equations can be arranged into a matrix form as

shown below:

n

{f2} = Y. [AiJ {f_}
i=l

(3.2)

where

{f2} = LMx Mz My Vy Vz VxJ



[B i] =

[I]

[0]

i 0
[ hi hy

I 0 0 -hy i

I 0 0 h i

I ...........

I [I] m

[I] = Identity matrix

[0] = Null matrix

3.2 Compatibility Across the Clevis

Since the clevis is assumed to be rigid, the displacements and

rotations of the branches and the blade are related as shown below

(see Figures 3.1 and 3.2)

• i_2U2 = u_ + hi_:2 + hy

w2 = w__ hy

1_2 = I_

'2 = *_ - e r c

(3.3)

where 0re = root collective pitch. The above compatibility equations

can be arranged into a matrix form as shown below:

{d2} = [B i] {d_} + {b}
(3.4)
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where

{d2} T= L u w v e _ q) _1

{b} T = L 0 0 0 0 0 0rc J

[B i] =

l

[ h i h i 0
z y

[I] I 0 0 -hy i
i

I 0 0 h z

.............

[ 0 ] I [I] _
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• NONLINEAR STEADY STATE DEFLECTIONS

4.1 Equations of Motion

Substitution of the aerodynamic forcing functions (equations

(2.76)-(2.79) into the twelve governing first order equations (2.7),

(2.8), (2.9) and (2.33)-(2.41) yields a set of time dependent nonlinear

differential equations. The time dependent terms are dropped to

compute the nonlinear steady state deflections, and the resulting

equations are given below in matrix form.

{z(x)}' = [A(x,z)] {z(x)} + {f} (4.1)

where the state vector consists of deflections, slopes, moments and

shears.

{z(x)} T = L u v w c _ t_ Mx Mz My Vy Vz Vx 9 J

The nonzero elements of the coefficient matrix are

A(1,4) = -e/2; A(1,5) =-{/2; A(1,12) = -1/EA;

A(2,4) = 1; A(3,5) = 1; A(4,4) = -alMx;

A(4,5) = a3Mx; A(4,6) = (-a4Mz- 2alMy); A(4,8) = al;

A(4,9) = -a3; A(5,4) = -a2Mx; A(5,5) = alMx;

A(5,6) = (-2alMz + a4My); A(5,8) = a2; A(5,9) = -al;

A(6,4) = Mz/GJ; A(6,5) = My/GJ; A(6,7) = 1/GJ;

A(7,3) = mf_2esin0; A(7,4) = (Vy + k3k4f_2xv

- k3klk4fl2x - k4c2f12x/16);
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A(7,5) = -Vz; A(7,6) = mf_2(k22-km22)(cos20 - ¢cos0sin0)

+ f_2ecos0v - k3k4f22x2;

A(7,13) = k3k4ta2x2; A(8,5) = Vx; A(8,6) = -mf_2exsin0;

A(8,10) = -1; A(9,4) = -Vx; A(9,6)=-mD2excos0;

A(9,11) = 1; A(10,3) = -mn2; A(10,4) = k4nvikl;

A(10,6) = mf22esin0 + k4Dxvi; A(ll,4) = -k4(kl-v)f_2x;

A(11,6) = -k4f_2x2; A(11,13) = -k4f#x2; A(13,5) = (Mzal-Mya3)

where kl= c(l-e)/2 k3= ce/2

k2 = cd/a k4 = pac/2

The nonzero elements of the nonhomogeneous excitation vector are

f(7) = f_2m(k2m2-km 2 1)cos0sin0 + k3k4f2xvi- k3k4f22x20

c 2

- k3k4_2xkll3pc + k4 _ 13pc

f(8) = f22excos0

f(9) = -mf_2exsin0

f(10) = -mta2ecos0 + k4{-vi + f_2x2k2 + f_xvi0 + klf_vil3pc}

f(ll) = k4f_xvi - k4f12x20 + mf_2Xl3pc - k4f_2xkll_pc

f(12) = -mf_ 2x

4.2

and

complicated

Iteration Scheme

The overall scheme

then use these results

nonlinear

for Nonlinear Differential

is to first solve a standard, linear

to simplify and solve the more

problem.

Equations

problem
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The following two equations are linearized forms of the

nonlinear equation (4.1). Both satisfy all the appropriate boundary

conditions.

{Z(1)(x)} '= [A(x,Z)z= 0] [z(1)(x)} + [f}

[z(2)(x)} '= [A(x,Z)z=z(1)] {z(2)(x)} + [f}

(4.1a)

(4. lb)

The two solutions denoted by {z(1)(x)} and {z(2)(x)} are defined as the

first and second approximate solutions of equation (4.1).

Equation (4.1a) is simply equation (4.1) linearized by the

starting assumption {z(x)} = {0} in the coefficient matrix [A]. Its

solution {z(1)(x)} = is a linear solution to equation (4.1).

The solution {z(1)(x)} is then used to linearize the coefficient

matrix [A(x,Z)z=z(1)] in equation (4.1b). Solution of equation (4.1b)

yields {z(2)(x)}, and {z(2)(x)}represents the first nonlinear solution to

equation (4.1). The second nonlinear solution is based on

{Z(3)(X)} = {z(2)(X)} + {AZ(2)(X)} (4.2)

where {Az(2)(x)} is an incremental solution. To a first order, the

incremental solution is governed by the following equation.

{Az(2)(x)} ' = ([A(x,z(2))] + [B(x,z(2))]) {Az(2)(x)}

{y(u2)(x)}

where {y(2)(x)} is the unbalanced load and is given by

{3)(2)} = {z(2)(x)} ' _ [A(x,z(2))] {z(2)(x)} - {f}

(4.3)
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Equation (4.1b) can be used to rewrite the above equation for the

unbalanced load as

{y(:)(x)} = ([A(x,z(1))] - [A(x,z(2))]) {z(2)(x)} (4.4)

The jthcolumn of matrix [B(x,z(2))] denoted by {Bj} is given by

(_zj _ {z(2)} (4.5){Bj} = [A(x,z)] =z(2 )

where zj is the jth element of the state vector {z}. Since {z(3)(x)} and

{z(2)(x)} satisfy the same set of boundary conditions, the incremental

solution vector {Az(2)(x)} satisfies the following zero boundary

conditions by virtue of equation (4.2).

{Az(2)(X)} = {0} at boundary points (4.6)

Now the incremental solution is obtained by solving equations (4.3)

through (4.6). Once {Az(2)(x)} is known the third approximate

solution {z(3)(x)} is given by equation (4.2). In general, for the ith

iterate equations (4.2) through (4.6) may be written as

{z(i+l)(x)} = {z(i)(x)} + {Az(i)(x)}

where

(4.7a)

{Az(i)(x)}' = ([A(x,z(i))] + [B(x,z(i))]) {Az(i)(x)}

- {y(i)(x)} (4.7b)



and

and

{y(_)(x)} = ([A(x,z(i-1))] - [A(x,zi)]) {z(i)(x)}

{Bj} = (_-_zj [A(x,z(i))) {z(i)(x) }

{Az(i)(x)} = {0} at boundary points

(4.7c)

(4.7d)

(4.7e)

A few iterations of equations (4.7) are required to achieve

convergence for the nonlinear steady deflections. This procedure is

essentially equivalent to the quasi-linearization method of solving

nonlinear boundary value problems [42].

5O

4.3 Static Transfer Matrix and Solution

The starting and the subsequent iteration solutions (equations

(4.2) - (4.7) involve the solution of a linearized branched boundary

value problem of the following form.

{z(x)}' = [A(x)] {z(x)} + {f} (4.8)

The transfer matrix for the homogeneous part of this equation is

static (time independent) and is given by [23] as

[T(x)]' = [A(x)] [T(x)] (4.9)

with the initial conditions

[T(0)] = [I1 (4.10)



The static transfer matrix is used to construct the homogeneous

solution. Taken together with the particular integral the complete

nonhomogeneous solution for equation (4.8) can be written as in

reference [261

{z(x)} = [T(x,0)] {z(0)}
x

+ [T(x,O)l _ [T(s,O)] -1 {f(s)}ds
o

(4.11)

4.4 Formulation

From equation (4.11), the following relation can be written

between the state vectors at locations 2 and 3 on the blade (see

Figure 3.1)

{z3} = IT] {z2} + {c} (4.12)

This equation may be rewritten in an expanded form relating

deflections (d) and forces (f).

f3 T21 T22 f2 c2

(4.13)

Similarly, the transfer matrix relation for the ith load path can be

written (see Figure 3.1)

{zJ2} =[T i] {z_} + {ci} (4.14)

Expanding the above equation into a partitioned form gives
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The transfer matrices in the above equations are determined from

equations (4.9) and (4.10) and the nonhomogeneous solution vector

{c} is obtained from equation (4.11).

In general, boundary conditions are defined at the branch roots

and the blade tip. Equilibrium (equation (3.2)) and compatibility

(equation (3.4)) relate the state vector between the blade root and

the branch tips (across the clevis).

The boundary condition at the blade tip is

(f3} = (o} (4.16)

The root ends of the branches are assumed either as clamped in

bending and extension and either clamped or spring restrained in

torsion. However, the formulation allows for different root

conditions. The number of branches is also kept general:

clamped"

spring restrained (torsion):

{di} ={0 } (4.17)

Ul = Vl = Wl = O; _bl = Mxl/k¢ 1,

My 1 = O, Mz 1 = 0 J
(4.18)
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where k¢_ = control system stiffness.

From equation (4.15)

{di2}=[Tlil ] {dil} + [Tli2 ] {f_}+{c_}

{fi2}=[T2il] {d_}+[T}2] {f_}+{c_}

From Eq. (4.19)

{f_} = [Tli2]-l{d_} -[Tli2 ] -I{T _{d I} -[Tli2 ]'1

Apply compatibility across the clevis. Substitute

(4.21)

{f_}=tTli2 ] -ltBi]'l{d2}- [Tii2 ] "I[T lil]{d_}

-[Tli2 ] ([Bi]'l{b} + {cl}

Eq. (4.22) for clamped branches can be written

boundary condition (4.17)

{f_}=[r i] {d 2} +{e i}

where

[r i] = [Tli2 ] -l[Bi]l

{e_} =-[Tli:_-l(tBi]-l{b} + {c_})

For spring restrained branches, equation (4.22)

{f]} =[r i] {d2} + [s i] {d_} + {ei}

(4.19)

(4.20)

{c_} (4.21)

equation (3.4) into

(4.22)

by applying the root

remains as

(4.23)

(4.24)

(4.25)

(4.26)
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Expanding Eq. (4.26) and substituting boundary conditions given by

Eq. (4.18) yields

• 1 i"
Mxl = k,# 1

0

0

V i
Yl

V i
Zl

V i
Xl

[r11,rl2]tId2}
r2 1 I r22 rd2

Sll I s12
+ - _ [

s21 I s22

0

I i_ 131 f ie_

e_
(4.27)

Extract the top three equations of Eq. (4.27) and rewrite as

EookoOoOoO}= [rll] {ld2} + [r12] {rd2}



(4.28)
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Rewriting Eq. (4.28),

[p] [rll] {ld 2} + [r12] {rd 2} + {e_} (4.29)

where
O 0 k,l

[p] = 0 0 0 - [s12]

0 0 0

From Eqs. (4.29) and (4.18)

{d_} =[a i] {d2} + {m i} (4..30)

where

I _°, / _°_][a i] = ..........

L[pll[rll] I [p]l[r21]

{m i} = I°l
[pl-l{el}

(4.31)

(4.32)



Substituting Eq. (4.30) into Eq. (4.26) yields

{f_} =(Jr i] + [s i] [ai]) {d2} + [si] {m i} + {e i } (4.33)
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For clamped branches, the boundary condition (4.17) can be applied

to equation (4.20)

{f]} =[T i22] {fl i} + {ci2} (4.34)

Substituting Eq. (4.23) into Eq. (4.34) gives

(fi2} = [k i] {d2} + (1i} (4.35)

where

[k i] = [T2i 2] [r i] (4.36)

[li] = [T_2 ] {e i} + {el} (4.37)

For spring restrained branches, substituting Eq. (4.30) into Eq. (4.20)

gives

{fi2}=[k i] {d2} + {1i}

[k i]= [T_2] [r i] + ([T2il]+[T_2] [si])+ [a i]

tl i]= tT_2] {ei} + tc]]+(tT_l] + [Ti22 ] [si] ) {mi}

(4.38)

(4.39)

(4.40)

Substituting Eq. (4.35) or Eq. (4.38) into the equilibrium equation

(3.2) across the clevis yields

[f2] = [kl] {d2] + {k2} (4.41)

where
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n

[kl]= _ [A i] [k i]

i=l

n

[k2]= _[A i] {l i}

i=l

(4.42)

(4.43)

From Eq. (4.13)

{f3} = [T21] {d2} + [T22] {f2} + {c2] (4.44)

Substituting Eq. (4.41) into Eq. (4.44) yields

{f3} = ([T21] + [T221 [kl]) {d2} + [T22] {k2} + {c2} (4.45)

From applying the boundary condition for the blade (Eqs. (4.16) -

(4.45))

{d2} = -([T21] + [T22] [kl]) -1 ([T22] {k2} + {c2}) (4.46)

Now the state vector {z2} is known from Eqs. (4.46) and (4.41). The

state vector {z_} for the spring restrained branches can be obtained

from Eqs. (4.30) and (4.33). For clamped branches {d_} = {0} by

virtue of the boundary condition and {f_} can be computed from Eq.

(4.23). Once the state vectors {z{} and {z2} are known, the solutions

at any station can be determined from Eq. (4.11) as shown below.

ith branch:

{zi(x)} = [Ti(x)] {z_} + {ci} (4.47)
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blade:

{z(x)} = [T(x)} {z2} + {c} (4.48)

For blades with single root branches, the boundary conditions are

assumed as shown below.

x=0: u=w=v=e=_=O

x=R: {t'3} ={0}

Mx

= k¢ (4.49)

(4.50)

The equilibrium and compatibility matrices become identity matrices

and this yields

{d 2} : {d 1} : [TI1 ] {dl} + [T12 ] {fl} + {Cl}

{f2} = {fl} =[Tll ] {dl} + [T12 ] {fl} + {c2}

(4.51)

(4.52)

Substitute Eqs. (4.50) to (4.52) into Eq. (4.45) yields

[A] {dl} + [B] {fl} + {E} = {0} (4.53)

where

[A]=[T211 [T_I ] + [T221 [T 12 ]

[B] = [T21 ] [T 112] + [T22 ] [T 212 ]

[el = IT21] [cl] + [T22 ] [c2l]

Substituting Eq. (4.49) into Eq. (4.53) yields the following equation

for _ 1.
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01 =-I_a 0 0 0 o 0I[B]-I{E} (4.54)

where

a = 1/(D1,6 + k,)

and

[D] = [B] -1 [A]

Once _1 is known, {dl} is known and {fl} can be computed from Eq.

(4.53) as shown below.

{fl} = -[BI-I[A] {dl} - [BII[E] (4.55)

Once the state vector {Zl} is known, the solution at any station can be

computed from the following equations.

branch:

{z(x)} = [TI(x)] {Zl} + {c} (4.56)

blade:

{z(x)} = [T(x)] {z2} + {c} (4.57)

4.5 Solution Procedure

As described in section 4.2, the linear solution is taken as the

starting solution for the iterations. The linear solution is obtained by
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solving Eq. (4.1) with {z(x)} = {0} in the coefficient matrix except for

the tension Vx. The tension in the blade is obtained as shown below.

R

Vx(x) = j" f_2mxdx (4.58)
x

The tensions in the branches are calculated by assuming that the

i i=0 '
branches are coincident with the blade at the clevis, i.e., hy = hy

The tensions corresponding to this case are calculated as follows. The

transfer matrix for axial motion of a beam for the static case is given

by

[1 a]IT(x)] = o 1 (4.59)

where

x
1

a= f _-_dx
O

By definition of the transfer matrix

l
0 1 tVil

(4.60)

From the above equation

u_ = aiVxl 1

vi:- Vx,
(4.61)
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The following two cases are considered

Case 1" 2 branches

Expansion of Eq. (4.61) yields

a,V' t
u 2 a2Vx2

For coincident nodes (u 1 = u22), Eq. (4.62) becomes

alV1 _ al V2 = 0x2 x2

For equilibrium

V12+ V22 = Vx2

Solving Eqs. (4.63) and (4.64) gives

V1 a2 1

x2 - a l + a2 Vx2

V2 al
x2 - al + a2 Vx2

(4.62)

(4.63)

(4.64)

(4.65)

Case 2: 3 branches

Expanding Eq. (4.61) for coincident nodes yields

1 2 V 3
alVx2= a2Vx2= a3 x2 (4.66)

For equilibrium
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1 2 + V3 3 Vx 2Vx2+ Vx 2 =

By solving Eqs. (4.66) and (4.67) yields

Vlx2 = a2a3V x2/D"

V 2 = a3a Vx2/Dx2 1

V32= ala2Vx2/D_

(4.67)

(4.68)

where D = ala2+ a2a3 + a3al

Now the above result can be generalized to the 'n' branch case

as shown below.

n,i

aj

vi = j=l (4.69)
x2 n n,k

Z (Z
k=l j=l

n,i

where _ = ala2 ... an/ai

j=l

and Vx2 is obtained from Eq. (4.58).

Now the tension in the ith branch corresponding to the coincident

branch case is given by

1

Vi(x) = _f_2mxdx + V ix2
X

(4.70)



Once Vx in the branches and the blade is known, the linear steady

state solution can be obtained following the procedure outlined in

Section 4.4. Note that for the single branch case, the Vx is simply

given by equation (4.58) in both the branch and blade.

63
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5. LINEAR PERTURBATION EQUATIONS

In the absence of experimental flight testing, the aeroelastic

characteristics of any flight vehicle in trimmed flight may be

investigated using perturbation equations. The procedure for the

development of perturbation equations is universal for all flight

dynamics problems. Here the complete perturbation equations for

an investigation of the flight dynamic instabilities of an isolated rotor

blade are presented. Components of such an aeroelastic analysis are

i) free vibration characteristics about the nonlinearly deformed

steady state and iii) complex stability eigenvalues. In the present

work, the equations below are utilized to investigate each of these

three elements.

The procedure for the development of the linear perturbation

equations is

1. Substitute {z(x,t)} = {Zo(X)} + {zP(x,t)} into the governing

differential equations (2.7), (2.8), (2.9) and (2.33-2.41)

and 2.80-2.82.

2. Subtract the nonlinear steady state equations (4.1) from

the results of step 1. This step will eliminate all steady

state and nonhomogeneous terms.

3. Drop the nonlinear terms in the perturbed variables

{zP(x,t)}.

The resulting linearized homogeneous perturbation equations are

listed below (with the bars omitted for simplicity).
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u' = -eoe - _o_ + Vx/EA

W'=E

V' --_

(5.1)

(5.2)

(5.3)

e' = -alMxoe + a3Mxo_ - (2alMy o + a4Mzo)O p

+ (-aleo + al_o)Mx + (al - a4¢o)Mz

- (a3 + 2al_o)My (5.4)

_' = -a2Mxoe + alMxo_ - (2alMzo - a4Myo)¢ p

+ (-a2eo + al_o)Mx

+ (a2 - 2al¢o)Mz - (al - a4%)My (5.5)

_' = (1/G J) (Mzoe + Myog + M x + eoMz + _oMy)

Mx-- -2mef_sin0fi + me(cos0-C?osin0(w

- me(sin+_oCOS0('v - f_2v)

+ 2f_m(k2m2Sin0 + km2 lCOS20_ + Vyoe

2 2 )cos0sin0_ + mk 2""+ 2_m(km2-km 1 - Vzo_ m_

+ fl2m(k2m2 - km21) cos20 - ¢_osin20) + mef_2VoCOS0 }

+ F-oVy - _oVz - Me

(5.6)

(5.7)

Mz = 2mef_cos0_, + Vxo g - met22xsin0_ - Vy + _oVx (5.8)



My = 2mef_sinO,;, - Vxoe - mef_2xcosO_ + Vz - eoVx

Vy 2f_mil + m(_,-f_2v) 2tamesinO_

- 2f_mecosO_ + mesinO(f_2_-¢) - Lv - 2f_ml3pc'/¢

!

Vz = mw + mecosO ¢ - Lw + 2mf_13pc_'

!

Vx = m('u-f_2u) - 2_m_,

(5.9)

(5.10)

(5.11)

(5.12)
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where the perturbed aerodynamic forcing functions are

Lv = k4[-_XVioCP- {2flxk2 + (O+¢o)Vio} x'

+ {2Vio - _x(O+CPO)io} (v

- klVio(¢+_e ) - k")kl(eo+13pC)io} w] (5.13)

Lw= k4[f_2x20 - _2X(Voe+eoV) - f_2Xl3pc)V

+ klfl2xe + {2f_x(O+¢o) -Vio + f_kl(eo+13pc)} x'

- f_x @ + klf_Xd_) (5.14)

and

Me = k3Lw - k4c2[f_x }t_+ f_2xe + n(eo+13pc))}_¢

k 1 = c(1-e)/2

k2 = cd/a

k3 = ce/2

k4 = pac/2

(5.15)
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• FREE VIBRATION CHARACTERISTICS

6.1 Equations for Free Vibration

The free vibration equations are a special case of the complete

linear perturbation equations developed in Chapter 5 (equations

(5.1) (5.12)). The free vibration equations are developed from the

linear perturbation equations by the following procedure.

1. Drop damping type terms, i.e. terms containing first

derivatives with respect to time (ia,_,, ¢¢,_,_,_b)

2. Eliminate time dependency in the equations by assuming

simple harmonic motion with frequency o_ for u, w, v and

{z(x,t)} = Ze it°t

3. Drop all the aerodynamic loadings (forcing functions).

The resulting equations are summarized below:

u' = -eoe - _o_ + Vx/EA (6.1)

w' = e (6.2)

v' =_ (6.3)

e' = alMxoe + a3Mxo_ - (2alMy ° + a4Mzo)_

+ (-aleo + a3_o)Mx + (al - a4_o)Mz

- (a3 + 2al_o)My (6.4)
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_' = -a2Mxoe + atMxo_ + (a4My ° - 2alMzo)_

+ (al_o - a2eo)Mx + (a2 - 2al%)Mz

+ (-al + a4_o)My (6.5)

_' = (1/GJ)(Mzoe + Myo_ + M x + eoM z + eoMy)

M' x = -co2mef_(cos0 - _o sin0)w + me(sin0

+ ¢Po COS0)( 0_2 + _2) v + VyoE - Vzo_

2 2 k 2 )(cos20 - ¢osin20)+ {-0_2k2 + f_ m(km2- m 1

+ me_22VoCOS0}¢ + eoVy - goVz

M' z = Vxo g - mef22xsin0¢ - Vy + _oVx

!

My = -Vxoe - mef_2xcos0_ + Vz - eoVx

(6.6)

(6.7)

(6.8)

(6.9)

!

Vy = -(co 2 + _2)mv + (o) 2 + f22)mesinO¢

V'z=-o_2mw - mec02cos0¢

V'x = -(co2+ t22)mu

(6.10)

(6.11)

(6.12)

Equations (6.1) to (6.12) govern the free-vibration state about the

nonlinear steady state position. Equations of motion governing the



free-vibration state about the initial geometry can be obtained by

substituting the following relations in the above equations.

Mxo My ° = 0Uo = Vo = Wo= Co = _o = _o = = = Mz o (6.13)

R

Vxo = fD2mxdx
x

Vy ° = f_2mxecos¢

Vzo = _mxesinl] ._

(6.14)
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6.2 Dynamic Transfer Matrix

The first-order differential equations of motion are linear and

homogeneous and therefore can be arranged into a matrix differ-

ential equation of the following form:

{z(x)}' = [A(x)] [T(x)] (6.15)

The transfer matrix for the above system is given by solving the

following equations.

[T(x)]' = [A(x)] [T(x)]

[T(0)] = [I]

(6.16)

(6.17)

Once the transfer matrix is known the free-vibration characteristics

of branched blades can be determined in the following section.
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6.3 Frequency Determinant

To compute the natural frequencies of the branched blade, a

frequency determinant is computed and scanned for different input

frequencies until the value of the determinant is zero. The input

frequency that returns a zero value for the frequency determinant is

a natural frequency of the system. Since the branches and blade are

modeled separately, the frequency determinant is constructed by

relating the state vectors at the branch roots to the state vector at

the blade tip.

By definition of the transfer matrix, the following relation

between state vectors at locations 2 and 3 can be written (see Figure

3.1)

{z3} =[T] {z2} (6.18)

Rewriting this equation into the following partitioned form:

d3 } I Tll I T12-
f3 T21 I T22_

_d2 _}
f2

(6.19)

Extracting the following equation for forces from Eq. (6.18) yields

{t"3} = [T211 {d2} + [T221 {f2} (6.20)

Similarly, the transfer matrix relation for the ith branch can be

written as (see Figure 3.1)
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Rewriting the above equation into partitioned form:

fd trTailTli ]f1
f_ LT2il I T212 fl

Expanding Eq. (6.22) gives

{di2}=[Tlil ] {d_}+[Tli2 ] {f_}

{fie}=[T_I] {d_} +[T_2] {f_}

(6.21)

(6.22)

(6.23)

(6.24)

The boundary conditions for the branch roots are given by

Clamped:

Spring Restrained:

{dl} =0

Ul =vl =Wl =My 1 = Mz 1 =0

(6.25)

(6.26)

For homogeneous problems, the collective pitch can be added to the

pretwist of the blade and this will translate as elastic twist to the

branches. For free-vibration problems, the steady state elastic twists

of the branches have to be determined to solve the homogeneous

problem. Once this is done, the compatibility relation given by Eq.

(3.4) can be written as

{d2} = [B i] {di_} (6.27)
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If the free-vibration is solved about the undeformed state, the elastic

twist of the branches due to collective pitch should be included as

pretwist of the branches. The equilibrium equation across the clevis

will be same as before as given by Eq. (3.4).

n

{f2 } = E [Ai] {f_. }

i--1

Two cases are considered here (clamped and spring restrained

branches).

, Clamped branches

By virtue of the boundary condition equation (6.25), equations

(6.23) and (6.24) become

{d{} = [Tli2 ] {f_}

{f:_} = [T:_ 2] {f{}

From Eq. (6.28)

{f_}=[T {2]-I {d_}

Substituting the compatibility Eq. (6.27) into Eq. (6.30) gives

{f_}= [Tli_-1 [B i] -1 {d2}

(6.28)

(6.29)

(6.30)

(6.31)
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Substituting Eq. (6.31) into Eq. (6.29) yields an expression for forces

in the clamped branches at the clevis

(6.32)

or {fi2} = [ki] {d2}

where [k i] = [T2i2 ] [r i]

[ril = [T {2] -1 [Bil 1

(6.33)

(6.34)

2. Spring restrained branches

From Eq. (6.23)

{f_}=[Tli2]'l{d:_}-[Tli2 ]'1 [Tlil ] {d_} (6.35)

Substituting the compatibility Eq. (6.27) into Eq. (6.35) gives

.

{f{}=[Tli2 ]-1 [Bi]-I {d2} _ [T1,2]-I [Till ] {d}} (6.36)

Rewriting Eq. (6.36) as

{f{} =[r i] {d2} + [s i] {d_} (6.37)
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where

[r i] = [T_-I [Bi] -1 (6.38)

(6.39)

Expanding Eq. (6.39)

i .

Mxl =k,(I) {

0

0

V i
Yl

V i
Zl

V i
Xl

rll'rl21f)I ....

r2 1 I r2 2 rd 2

I Sl 1 I s12 1
+ - - - I - - -

s21 I s22

0

0

0

*I

Extracting and rewriting the top three equations of the above

equation yields
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0 0
0 0

0 0
k l{!oo

+ [S12]

}= [rll] {ld2} + [r12] {rd2}

(6.40)

From Eq. (6.40)

.rt"]{_ - [p]-I [rll] {ld2} + [p]-I [r121 {rd2} (6.41)

where [p] is defined in Eq. (4.29)

From Eqs. (6.41) and the boundary condition equation (6.26) for

spring restrained branches

{d_} = [a i] {d2} (6.42)

where

0 I 0 ]
[ai] = - I

-[;llrl 1] I -[;- llrf2]-

Substituting Eq. (6.42) into Eq. (6.41) yields



{f_} =[r i] {d 2} +[s i] [a i] {d 2}

Substituting Eqs. (6.42) and (6.43) into Eq. (6.24) yields

{fi9 } =[k i] {d 2}
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(6.43)

(6.44)

where

[k i] =[T_ [r i] + ([Ti2_ [s i] + [T_I]) [a i] (6.45)

Equilibrium is enforced by substituting Eq. (6.44) into Eq. (3.4),

giving

{f2} = [D] {d2} (6.46)

where

n

[D]= _ [A i] [k i] (6.47)

i=l

Substituting Eq. (6.46) into Eq. (6.20) yields

{f3} = ([T21] + [T22] [D]) {d2} (6.48)

The boundary condition for the blade tip is given by

{f3} ={0} (6.49)

Application of this boundary condition to equation (6.48) yields
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([T21] + [T22] [D]) {d2} = {0} (6.50)

For nontrivial solutions of {d2}, the determinant of the coefficient

matrix should be zero and this condition yields the following

frequency equation to determine the natural frequencies of the

multiple branch blades.

det([T21] + [T22] [D])= 0 (6.51)

For single branch blades, the boundary conditions are assumed as

shown below.

x=0: Ul =Wl=Vl=el=_l =0 (6.52)

¢_1 = M x 1/k,

x =R: (f3} = {0} (6.53)

The equilibrium and compatibility matrices become identity matrices

and this yields

{d2} = {dl_} = [T]I] {dl} + [T]2] {el} (6.54)

{f2} = {f12} = [Tll ] {dl} + [T122 ]{fl} (6.55)

Substituting Eqs. (6.54) and (6.55) into Eq. (6.20) yields

{f3} =[A] {dl} +[B] {fl} (6.56)

(6.52)
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where

EAJ= _T211_T_iI + ET22J_T _1 I (6.57)

_BI= _T211tT }21+ tT221LT 212I (6.58)

Application of the boundary

equation (6.56) gives

condition equations (6.52) and (6.53) to

{0} =[A] + [B]

!jl

"M x = k#¢?

Mz

My

Vy

Vz

Vx

(6.59)

From Eq. (6.59)

where

[D] (fl) = (6.60)
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[D] = -[A]-I[B]

Extracting the last row of the above equation yields

D6,1k_ 1 + k D6, 2 D6, 3 D6, 4 D6, 5 D6, 6 J

fMz _

My

Vy

Vz

\Vxjl

=¢1 (6.61)

Rearrange Eq. (6.61) as

t_ 1 =k a 1 a 2 a 3 a 4 a 5 a 6 J {fl}

where

D6.j

a 1 =0andaj-D6,1k#O_l, j =2t°6

Substituting Eq. (6.42) into Eq. (6.60) yields

(6.62)

([D]- [A]) {Q} = {0} (6.63)

where
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0

0

.1

L a 1 a 2 a 3 a 4 a 5 a 6 .]

For nontrivial solution of {fl}' the determinant of the coefficient

matrix of Eq. (6.63) should be zero and this condition yields the

following frequency equation to determine the natural frequenices of

the single branch blade.

det([D] - [A]) = 0 (6.64)

6.4 Mode Shapes

A mode shape may be defined as the shape corresponding to a

specific frequency in which the elastic and inertial forces are in

equilibrium. The formulation for calculating the fully coupled flap,

lag and pitch mode shapes follows.

tE ll 12]  3j
f2 "i"21 I "i_22 f3

(6.65)

where

[i7 = [T] -1
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From the above equation, the displacement vector at the clevis is as

shown below by virtue of the boundary condition at the blade tip

{f3} ={0},

{d2} = [']'11 ] {d 3} (6.66)

Substituting Eq. (6.66) into Eq. (6.48) yields

{f3 } = [C] {d3} (6.67)

where

[C] =([Till + [T22] [DI) [Tll]

Assuming w 3 = 1 arbitrarily and rewriting rows 2 to 6 of Eq. (6.67)

gives

D m

C2,1 C2,3 C2,4 C2,5 C2,6

C3,1 C3,3 C3,4 C3,5 C3,6

C4,1 C4,3 C4,4 C4,5 C4,6

C5,1 C5,3 C5,4 C5,5 C5,6

-C6,1 C6,3 C6,4 C6,5 C6,6-

_u3_

v 3

e3

"-C2,2]

-C3,2 r

= _ -C4,2 (
/

-C5,2 /

--C6,2J

(6.68)

By solving the above equation, U3,V3,e3,_3, and ¢3 are known and

together with w 3 = 1 the entire blade tip deflection {d3} is known.

Once {d 3} is known, the state vector at the clevis can be determined

ferom Eq. (6.65) as shown below.



82

---= --- {d3}
f2

"i"21

(6.69)

Once the state vector at the clevis is known, the deflection vectors in

the blade and the branches can be obtained as follows.

Blade: By definition of the transfer matrix, the state vector at any

location x is given by

IdxtITIIT211td2}
fx k T21 ] T22.J x f2

(6.70)

From the above equation

{dxl = [Tlllx {d2} + [T12lx {f21 (6.71)

Branches: By definition of the transfer matrix, the state vector at

any location x in the branch is given by

f } Tl l{d t
fix LT_I I T_2 f_

(6.72)

For clamped root branches the following equation can be extracted

from Eq. (6.72) by virtue of the boundary condition deflections

{dl] = {0} at the root.
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(6.73)

For spring restrained root branches the equation remains as

{d_}=[Tlil ] {d_}+ [T_2] {f_} (6.74)

Eq. (6.31) provides {f_} for clamped branches, and Eqs. (6.42) and

(6.43) provide {d_}, {f_} for spring restrained branches.

For single branch blades Eq. (6.63) can be solved for {fl}

assuming Vz = 1 arbitrarily, and then t_l can be comnputed from Eq.

(6.61).

branch' {dx} = [T_I] {dl} + [Tl12] {fl} (6.75)

blade: {d x) = [Tll] {d2) + [T12] (f2) (6.76)



B AEROELASTIC STABILITY CHARACTERISTICS

7.1 Equations for Aeroelastic Stability

The perturbation equations (5.1) - (5.12) are specialized with a

transformation to the frequency domain to determine the equations

governing the aeroelastic stability characteristics of branched blades.

The transformation is accomplished by substituting

{zP(x,t) } = ZP(x) } e _.t (7.1)

where k is complex and equal to _ + io. (Note that for free vibration

was simply equal to i¢o.) The resulting equations are (superscripts p

omitted)

u'= -eoe -_o_ + Vx/EA (7.2)

w' = e (7.3)

v'=_ (7.4)

e' = -alMxoe + alMxo g - (2alMy ° + a4Mzo)_

+ (-aleo + a3_o)Mx + (al - a4_o)Mz

- (a3 + 2al_o)My (7.5)

-a2Mxoe + alMxo_ - (2alMzo a4Myo)O

+ (-a2eo + al_o)Mx + (a2 - 2al_o)Mz

- (al - a4_o)My (7.6)
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¢' = (l/GJ)(Mzoe + Myo_ + M x + eoM z + _oMy
(7.7)

M' x = -2mef2sin0ku + me(cos0-¢_o sin0)k2w

- me(sin0+¢o cos0)X2-f22)v

+ 2f_m(km22Sin20 + kin2lCOS20)ke + Vyoe

2 2
+ 2_m(km2-k m 1)cos0sin0Z,_ - Vzo_

2 2 2 )(cos20 - ¢osin20)+ {mk22_'2 + f_ m(km2-km 1

+ mef_2VoCOS0}¢ + eoVy - _oVz - Me (7.8)

M' z = 2f_me_cos0Xv + Vxo_ - mef_2xsin0¢ - Vy + _oVx (7.9)

My = 2f2mef_sin0kv - Vxoe - mef_2xcos0¢ + Vz - eoVx

V'y = 2f_Xu + m(k2-f_2)v - 2f_meksin0e

- 2f2mekcos0_ + mesin0(f_2-_,2)¢

- Lv- 2mf_[_pc_.W

(7.10)

(7.11)

V'z = mk2w + me_,2cosO¢ - Lw + 2mf_13pcV (7.12)

V'x = m(k2-f_2)u - 2f_m_.v (7.13)

where



Lv = k4[-_XVio _ - {2f_xk2 + (0+t_o)Vio}_,v

+ {2Vio-_x(0+t_o)_,w

- klVio(7_+f2e) - f_kl(eo + 13pc)kW

Lw = k4[D2x2t_ - _2X(Voe+l_oV ) - _2X_pcV

+ kl_2Xe + {2f_x(O+_o ) - Vio + f_kl(eo+_pc)}X v

- f_xkw + klf_x_O]

(7.14)

(7.15)
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Me = k3Lw - k4c2[f2x_t_ + t_2xe + f2X(eo+13pc)V ] (7.16)

and

kl = c(1-e)/2 k3 = ce/2

k2 = cd/a k4 = pac/2

7.2 Stability Eigenvalues

Equations (7.2)-(7.13) are linear homogeneous equations like

the free vibration equations (6.1)-(6.12), and calculation of the

complex transfer matrices proceeeds similarly for the branches and

blade. Equations (7.2)-(7.13) can be arranged into a matrix

differential equation

{z(x)}' = [A(x)] {z(x)} (7.14)

where [A(x)] is now complex. The transfer matrix for the above

system is given by solving the following equations
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[T(x)]' = [A(x)] [T(x)l (7.15)

[T(0)] = [I] (7.16)

Once the transfer matrices are known for the blade and branches a

stability determinant is formulated. The stability determinant is of

the same form as the frequency determinant (equation 6.47) and is

given by

det([T21] + [T22] [D])= 0 (7.17)

where [D] is defined with equation (6.43).

The eigenvalues of the stability determinant are complex

whereas the eigenvalues of the frequency determinant are real.

Thus 7_ in equations (7.2) - (7.16) takes complex values. The

eigenvalues of the stability determinant are calculated by Muller's

method [42] for determining complex roots, whereas the eigenvalues

of the frequency determinant are calculated by a frequency scanning

technique.

Stability of the branched blade is inferred by examining the

sign of _ (the real part of _). If _ is positive then it can be seen from

(7.1) that the perturbation state vector increases exponentially with

time and thus the system is unstable. If _ is negative, then the

perturbation state vector decreases with time and eventually damps

out. In this case the system is stable.
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8.1 Computer Program

A comprehensive computer program is developed to imple-

ment the formulation presented in the preceding chapters. The

program determines the following for a branched blade with up to

three branches:

1. Natural frequencies and mode shapes about the

undeformed position

2. Steady state nonlinear deflections of the blade and

branches

3. Natural frequencies and mode shapes about the steady

state deformed position

4. Complex stability eigenvalues

Additionally, the program features fully coupled nonlinear

flapwise bending, chordwise bending, torsion and axial extensions. It

can also handle noncoincident mass, elastic and aerodynamic center

axes with nonuniform property distributions in both the blade and

branches. The code is lengthy (approximately 4000 lines) and thus is

included in a separate volume.

The program is based on a continuous system model, with

transfer matrices calculated by a fourth order Runge-Kutta

integration scheme. It should be noted that if a discrete model is

used to compute the transfer matrices the formulation is still valid.
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The transfer matrices based on the discrete model can be used in

place of those computed based on the continuous system model.

8.2 Validation of Nonlinear Formulation - Single Branch
Blade

To demonstrate the extension of the transfer matrix method to

nonlinear problems, the conventional single-branch rotor blade

model considered in reference [40] is analyzed first. The data of the

model is shown in Table 8.1.

The natural frequencies (both rotating and nonrotating) are

given in Table 8.2. Nonrotating frequencies about the initial

undeformed state are computed using the present method and closed

form analytical expressions (see Appendix B). The rotating blade

frequencies are shown about both the initial undeformed position

and the nonlinear steady deformed position. The flap frequencies

are strongly effected by rotation due to added stiffness coming from

centrifugal effects. Chord and torsion frequencies are much less

sensitive to rotation. The frequencies about the deformed state are

seen to be close to those about the initial undeformed state.

The steady state nonlinear tip deflections are given in Table

8.3. These trim tip deflections are compared graphically with the

results of reference [39] in Figure 8.1, and the agreement is quite

good. The Newton-Raphson iteration scheme developed for the

nonlinear distributed system equations is employed to obtain the

convergence. The efficiency of the scheme is indicated in Table 8.4
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Table 8.1

Data for conventional blade

C/R = 40 in
km 2 = 0

0 = 0.0 °

13pc = -2.86480 to 5.7296o

km2/2 = 0.025

(kA/km) 2 = 1.5

COw = 1.15 a=2r_ per rad

o_, = 1.50 b=4

_=5.0

_' = (3pacR/m) = 5

Cdo/a = O.Ol/2rc

0re = 0.0 ° to 28.6479 °

e/R = 0.0



Table 8.2

Natural frequencies (rad/sec), single branch blade
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Mode Initial state

f_=0

Present

Method

D2 = 9.3456

Analytical

Deformed state

_2 = 9.4356

13rc = 0.3 rad

2

3

4

5

6

7

8

9

10

3.3813 F

11.4324 C

21.1905 F

37.6596 T

59.3348 F

71.6468 C

112.9801T

116.2750 F

188.3004 T

192.1118 F

3.3810

11.4314

21.1898

37.6601

59.3381

71.6443

112.9803

116.2725

188.3004

192.2055

9.1576

11.9370

29.3043

39.7894

68.1363

74.0281

116.4039

125.6590

193.6040

201.9584

8.5005

12.0323

28.9895

40.3584

67.5846

73.8076

117.2911

124.7716

194.0339

200.5757

F = Predominantly flapwise

C = Predominantly chordwise

T = Predominantly torsion



Steady state

Table 8.3

deflections, conventional blade
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Precone

13pc (rad)

Root

ere

Collective

(rad)

Wotip Votip _Otip

-0.05

0.00

0.05

0.05

(-2.86 ° ) 0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.4079x10 -1 -0.5266x10-3 0.2027x10-3

(5.73 o) 0.6197x10 -1 -0.6360x10-2 -0.4760x10-2

0.9527x10 -1 -0.1944x10-1 -0.9353x10-2

(17.19 ° ) 0.1329 -0.4109x10 -1 -0.1391x10-1

0.1721 -0.7189x10 -1 -0.2001x10- 1

(28.65 ° ) 0.2096 -0.1110 -0.3180x10 -1

0.0000 -0.5222x10 -3 0.0000

0.2150x10 -1 -0.2942x10-2 -0.4693x10-2

0.5554x10 -1 -0.1272x10-1 -0.8666x10-2

0.9466x10 -1 -0.3145x10-1 -0.1174x10-1

0.1366 -0.6024x10 -1 -0.1469x10-1

0.1790 0.9938x10 -1 -0.2022x10-1

-0.4079x10 -1

-0.1935x10 -1

0.1503x10 -1

0.5516x10 -!

0.9922x10 -1

0.1454

-0.8157x10 -1

-0.6058x10 -1

-0.2628x10 -1

0.1440x10 -1

0.6005x10 -1

0.1094

-0.5266x10-3

0.5137x10 -3

-0.5813x10 -2

-0.2128x10 -1

-0.4746x10-1

-0.8553x10 -1

-0.5398x10-3

0.3977x10 -2

0.1234x10 -2

-0.1069x10 -1

-0.3375x10 -1

-0.6994x10 -1

0.2027x10-3

-0.5085x10 -2

-0.8956x10-2

-0.1120x10 -1

-0.1202x10 -1

-0.1313x10 -1

-0.4070x10-3

-0.5938x10 -2

-0.1022x10-1

-0.1224x10 -1

-0.1159x10 -1

-0.9264x10 -2
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- Reference[40]

• Present TM formulation

" .08

(a)
I t I |

-.O4

-.08

-.12

! I I

_pc, rod

"005

j 005i-_, ;, .'_ ._ ._ ._

0, rad

Figure 8.1 Comparison of Steady State Deflections
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Convergence of

_pc ----

Table 8.4

nonlinear steady state

0.05 (2.86o), 0rc = 0.3

trim (tip deflections)

rad (17.19 °)

State

variable
Starting
solution

z(1)(x)

Starting I
solution iteration

z(2)(x)

I I III

iteration iteration

U

W

V

£

¢

0.3946x10 -6

0.5140x10 -1

-0.2037x10 -1

0.7444x10 -1

-0.2868x10 -1

-0.1406x10 -1

-0.1913x10 -2

0.5563x10 -1

-0.2145x10 -1

0.7972x10 -1

-0.2990x10 -1

-0.1034x10 -1

-0.2023x10 -2

0.5516x10 -1

-0.2128x10 -1

0.7912x10 -1

-0.2967x10 -1

-0.1121x10 -1

-0.2007x10 -2

0.5516x10 -1

-0.2128x10 -1

0.7912x10 -1

-0.2967x10 -1

-0.1120x10 -1

-0.2007x10 -2

0.5516x10 -1

-0.2128xi0 -1

0.7912x10 -1

-0.2967x10 -1

-0.1120x10 -1
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which shows the nonzero elements (deflections) of {z} at the blade

tip. The first and second columns of this table are given by

equations (4.1a) and (4.1b) respectively. The third, fourth and fifth

columns are the first, second and third Newton-Raphson iterative

solutions respectively computed using equations (4.7). All the blade

tip motions are converged to four significant figures.

The complex stability eigenvalues are determined from

perturbations about the nonlinearly deformed steady state position.

The stability eigenvalues obtained using the present method are

compared with the results obtained in references [40] and [44] in

Table 8.5. Since the real parts of the eigenvalues are negative for all

the modes (flap, lag and torsion) the perturbation motion damps out

and the system is stable. The flap and torsional motions have a

much larger stability margin than the lag motion since the real parts

of those eigenvalues are much larger negative numbers than the real

part of the lag stability eigenvalue. It is also interesting to note that

the imaginary parts of the stability eigenvalues in Table 8.5 are quite

close in value to the natural frequencies computed about the non-

linearly deformed steady deformed position (Table 8.2). Since the

imaginary part of the stability eigenvalue represents the damped

natural frequency and it is quite close to the undamped natural

frequency it is clear that there is very little damping in this system.
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Comparison

Table 8.5

of stability eigenvalues, conventional blade

Present TM
Formulation

(rad/sec)

0rc = 0.3 rad (17.19o), 13pc = 0.0 rad

Ref. 40 Ref. 44

Flap

Lead-lag

Torsion

-2.2509 + 7.3895i

-0.4851 + 12.5397i

-2.7870 + 40.23271i

-2.2449 + 7.5554i

-0.5029 + 12.5915i

-2.7932 + 39.1123i

-2.2194 + 7.5957i

-0.5308 + 12.4642i

-2.7780 + 40.2057i
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8.3 Validation of Multiple Branch Formulation

The formulation for multiply-branched blades is validated by

performing the calculations for the twin beam model considered by

Sivaneri and Chopra [33]. The data for the twin beam model are

shown in Table 8.6.

The rotating natural frequencies are shown in Table 8.7.

Frequencies about both the initial state and the nonlinearly

deformed trim state are presented. Those computed by the present

method agree well with Sivaneri and Chopra's results [33].

The nonlinear steady state trim deflections computed from the

present method are compared with those obtained in [33] in Table

8.8. Minor differences in the trim deflection are attributable to

differences in input data in the axial stiffnesses of the two load path

branches at the blade root. Specifically, the axial stiffnesses of these

members significantly effects the in-plane bending stiffness due to

load path offsets. This parameter was not explicitly defined by

Sivaneri and Chopra in [33] and thus may differ from that used for

the present calculations.

The stability eigenvalues for both methods are compared in

Table 8.9. Examination of the real parts of the flap and torsion

eigenvalues shows good agreement, with both methods indicating a

negative sign and subsequently stable flap and torsion motions.

However both methods result in a lag eigenvalue with a positive real

part. This indicates that the lag mode of the system is unstable, and

any perturbation motion will grow with time. The difference in
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Data for the branched blade
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Blade

C/R = _/40

Blade/R = 0.75

Flexure/R = 0.25

0 = 12.7183 (constant)

l_pc = 0.05 rad = 2.8648 °

EIy/f_2mo R4 = 0.014486

EIz/_2mo R4 = 0.166908

GJ/f_2mo R4 = 0.0004625

m/mo R4 = 1

e/R = 0.0

l_ml = 0.0

l_m2 = 0.025

(kA/km) 2 = 1.5

EA/t_2no R4 = -0.1209293

_=0.1

a = 6.0 per rad

Cdo = 0.0095

Ore = 0.0 °

2 Identical Load Paths

0 = 0.0

13pc = 0.05 rad = 2.8648 °

EIy/f_2mo R4 = 0.007243

EIz/f_2mo R4 = 0.083454

GJ/f_2m • R = 0.000925

kml/R = 0.0

EA/f_2m R 4 = 0.0604646

km2/R = 0.0125

kA/km = 0.5

e/R = 0.0

m/m o = 0.5

Clevis Geometry for

hylR/C = 16

hzl = 0.0 in

hy2R/C = 16

hz 2 = 0.0 in

Twinbeam Model
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Natural frequencies

Table 8.7

(o_/f_), twin branched blade

Initial State

CT/C = 0

Trimmed state

CT/t_ = 0.1, _pc = 0.05 (2.86°);), = 5.0

Present

Formulation

1.150

1.874

2.908

3.675

7.624

8.536

10.007

11.233

15.224

15.7355

Ref. 33

1.149

1.870

2.910

Present

Formulation Ref. 33

1.14888

1.77702

2.90542

3.78192

7.62226

8.41963

10.14406

11.23863

15.22107

15.77955

1.14974

1.77961

2.88141
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Table 8.8

Nonlinear steady state tip deflections, twin branched blade

CT/O = 0.1, 13pc = 0.05 (2.86°); y = 5.0, O_w/O = 1.15, _v/f_ = 1.87

c0_/f_ = 2.91, zero inboard pitch

UO WO Vo _0

Present TM

Formulation

0.001548 0.01595 -0.004130 -0.02970

Ref. 33 0.01613 0.011213 -0.003750 -0.030735
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Table 8.9

Stability eigenvalues, twin branched blade

Present TM

Formulation

Ref. 33

Flap (k/f_)

-0.34539 + 1.03535i

Lead-lag (_/_)

0.01102 + 1.76109i

-0.35267 + i 0.00445 + 1.76i

Torsion (_/_)

-0.40113 + 2.92296i

-0.38119 i
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magnitude of the real part of the lag eigenvalues can be due to

differences in the trim position the stability is computed about.
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• CONCLUDING REMARKS

The objective of the present research is to extend the transfer

matrix method to a new class of problems and generate numerical

results to verify the concepts developed. Herein a direct transfer

matrix method is developed to determine the dynamic characteristics

of branched autonomous nonlinear rotor blades. The new features of

the present formulation compared to traditional transfer matrix

methods are its ability to treat nonlinear boundary value problems

(using a Newton-Raphson iteration scheme developed for distributed

systems) and treat multiply branched distributed systems. In the

case of the multiply branched rotor systems, a rapid iterative scheme

is employed for the estimation of the tension coefficients in the blade

root branches.

The analysis is coded in a FORTRAN computer program, which

calculates (1) natural frequencies and mode shapes about both the

initial undeformed and deformed trim states, (2) nonlinear steady

state deflections corresponding to the hover trim state and (3)

aeroelastic stability characteristics of single and multiple-branch

rotor blades. Throughout the actual calculations, the order of the

matrices involved is only six by six so the method is computationally

efficient.

The analysis is applied to two different rotor configurations. A

conventional single-branch blade is considered to validate the

nonlinear portion of the analysis. The single-branch blade
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frequencies, nonlinear trim deflections, and complex stability

eigenvalues presented provide excellent correlation with the known

results. A twin-branch blade is also analyzed and its frequencies,

nonlinear trim deflections and complex stability eigenvalues are in

agreement with the published data.

The numerical results thus validate the advancement of the

transfer matrix method to treat nonlinear distributed boundary

value problems with multiple branches.

The extended transfer matrix method has a great potential for

use in several classes of engineering problems because of its

computational efficiency. With computer speed roughly doubling

every eighteen months, it is conceivable to tackle system

optimization or near real-time system simulation with an

unprecedented level of modeling sophistication. This could radically

change the way current designs are developed, because it would

allow an designer to evaluate many more designs and thus explore a

much bigger region of the design space.

The next logical step for the rotorcraft application is to attack

the forward flight problem. The primary complication in forward

flight is the changed nature of the governing equations. In

particular, the aerodynamic lift, drag and moment vary in a periodic

fashion around the azimuth. This results in a set of nonlinear partial

differential equations in space and time with periodic coefficients. In

hover, the equations have constant coefficients and by assuming the

motions are simple harmonic motions it is possible to reduce the
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partial differential equations in space and time to ordinary

differential equations in space.

This approach is not viable for the forward flight equations.

There are several alternatives for computing the solution of the

periodic forward flight equations.

1. The free vibration problem is solved and the modes

(eigenfunctions if using a continuous system model,

eigenvectors if using a discrete system model) are used to

reduce the partial differential equations to a set of ordinary

differential equations in generalized time coordinates. The

solution is then obtained by integrating the ordinary

differential equations in generalized coordinates and

constructing the complete solution via modal

transformations. In this approach the transfer matrix

method is only used to solve the free vibration problem.

2. The second approach is known as harmonic analysis. In this

approach the rotor blade is not modeled as a continuous

system but is discretized into a finite set of elements. The

state vector at a given radial location undergoes periodic

variation as it moves around the azimuth. Thus the motion at

that station can be expanded in a Fourier series which has as

its frequencies multiples of rotor speed. For an infinite

Fourier series the result is an infinite set of algebraic

equations, with one set of algebraic equations each for the

zeroth, first, second, etc. harmonic coefficients in the Fourier
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series. In practice the Fourier series are truncated and so the

result is a finite set of algebraic equations which are solved

with routine linear algebra techniques. This approach lends

itself readily to the transfer matrix method since transfer

matrices can be used to relate the harmonic coefficients at

different radial locations.

Both approaches are adequate for obtaining solutions to the

forward flight equations. However when using the modal approach

some approximations are incurred, and the level of accuracy is

dependent on how many modes are used. Highly nonlinear systems

are unwieldy to analyze using modes, and usually require careful

formulation and a large number of modes for reasonable accuracy.

The accuracy of the combined Fourier series and transfer matrix

approach is only dependent on the number of terms retained in the

series, and nonlinear systems are easier to model. For these reasons

the second approach is currently under development at Boeing

Helicopters. It is the foundation for the work in progress described

in reference [45].
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Appendix A: Helpful Integrals to Evaluate

Coefficients Defined in

Equations (3.47), (2.48)

the

-1

j. 1-_*
1 1+_*

_* d_* =

-1

if 1-%* _,2i%i-" _ _-_ -_
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Appendix B: Natural

Uniform

Frequencies of

Cantilevered

a Nonrotating

Beam

 n /EICOn= (131) ml 4 (Flap, Lag)

where

n (_1)_

1.875

4.694

and

3

>3

7.855

2n-1
2-- _ (approx)

(Torsion)

where n = 1,2,3, ....


